My Notebook
CtrlK
  • Introduction
  • Tutorials
    • SQL
      • Basics
      • Advanced
    • Python
      • Basics
      • Intermediate
      • Advanced
      • Visualization
      • Important Libraries
        • SpaCy
        • NumPy
        • Pandas
        • Scikit-learn
    • Git & GitHub
      • Linux | Shell Basics
      • Git Commands & GitHub
    • Deep Learning
    • Machine Learning
  • Book Notes
    • Python DS Handbook
      • 1. Jupyter Notebook (IPython)
      • 2. Introduction to NumPy
      • 3. Data Manipulation - Pandas
      • 4. Visualization - Matplotlib
      • 5. Machine Learning
    • Hands-on Machine Learning
      • I. The Fundamentals - ML
        • 1. The ML Landscape
        • 2. End-to-End ML Project
        • 3. Classification
        • 4. Training Models
        • 5. SVM
        • 6. Decision Trees
        • 7. Ensemble Learning & Random Forests
        • 8. Dimension Reduction
        • 9. Unsupervised Learning
      • II. Neural Networks - DL
    • Deep Learning with Python
      • 1. Fundamentals of DL
      • 2. Deep Learning in Practice
    • Elements of Statistical Learning
    • Math for Machine Learning
      • I. Mathematical Foundations
      • II. Central ML Problems
    • Deep Reinforcement Learning
      • I. Tabular Solution Methods
      • II. Approx. Solution Methods
      • III. Looking Deeper
      • IV. Deep RL
  • Advanced Topics
    • TensorFlow & Keras
    • Unit Tests & Refactoring
    • Data Structures & Algorithms
  • Miscellaneous
    • Coding Practice
      • LeetCode
      • HackerRank
      • ProjectEuler
Powered by GitBook
On this page

Was this helpful?

  1. Book Notes

Deep Learning with Python

This page is under construction...

1. Fundamentals of DL2. Deep Learning in Practice
PreviousII. Neural Networks - DLNext1. Fundamentals of DL

Last updated 4 years ago

Was this helpful?